skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhang, Eda"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. One of the goals of computing education research is to document the potential strengths and weaknesses of contemporary teaching methods in computing. Live coding has recently gained attention as one of the best practices for teaching programming. To offer a more comprehensive understanding of the existing body of research about live coding, we reviewed papers in computing education research that investigated the value of live coding in an educational setting. We categorized each paper based on (1) how it defines live coding, (2) whether its version of live coding could be considered active learning, (3) the type of study conducted, (4) types of data collected and the data analysis methods used, (5) evidence provided for the effectiveness of live coding, (6) reported benefits and drawbacks of live coding, and (7) reported theoretical frameworks used to explain the basis, effects or goals of live coding. We found that although live coding has been recommended as one of the best practices for teaching programming, there is a lack of empirical evidence to support claims about the effectiveness of live coding on student learning. Finally, we discuss the implications of our findings and suggest future research directions that could develop a more holistic understanding of this pedagogical technique. 
    more » « less
  2. This paper describes the design of a collaborative game, called Rainbow Agents, that has been created to promote computational literacy through play. In Rainbow Agents, players engage directly with computational concepts by programming agents to plant and maintain a shared garden space. Rainbow Agents was designed to encourage collaborative play and shared sense-making from groups who are typically underrepresented in computer science. In this paper, we discuss how that design goal informed the mechanics of the game, and how each of those mechanics affords different goal alignments towards gameplay (e.g. competitive versus collaborative). We apply this framework using a case from an early implementation, describing how player goal alignments towards the game changed within the course of a single play session. We conclude by discussing avenues of future work as we begin data collection in two heavily diverse science museum locations. 
    more » « less